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Analytic structure and chaotic dynamics of the damped driven Toda oscillator
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The singularity structure exhibited by the solution of the damped driven Toda oscillator in the complex time
(t2) plane is investigated through Painleve´ (P2) analysis. We find that there exists a specific parametric
choice for which the free butdampedToda oscillator possesses theP2 property and hence is likely to be
integrable. We present the exact solution corresponding to this integrable choice. In the nonintegrable regime,
we show that the singularities exhibit locally a complicated, clustered, two-armed infinite-sheeted Riemann
structure in the complext2 plane. Further, we have analyzed numerically the global singularity structure in
the complext2 plane~i.e., analytic structure! corresponding to the real time chaotic dynamics exhibited by the
system. From the investigations, we observe that the global singularity structure exhibits a ‘‘chimneylike’’
pattern in which the width at the bottom of the chimney decreases and the singularities tend to cluster at the top
of the chimney, in the complext2 plane corresponding to the real-time chaotic dynamics exhibited by the
system, as the control parameter is varied.@S1063-651X~97!10703-6#

PACS number~s!: 05.45.1b, 02.90.1p, 02.30.Hq, 02.30.Dk
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We consider the general form of the equation of motion
the damped driven Toda oscillator@1#, given by

ẍ1dẋ1aex2b5 fcosvt, ~1!

whered is the viscous damping parameter andf andv are,
respectively, the amplitude and frequency of the external
riodic force. The parametersa andb are associated with th
potential. Since the potential is asymmetric, the system
scribed by Eq.~1! can serve as a typical model for asymm
ric oscillators. It has already been used to describe a non
ear electronic circuit@2#. Here we wish to investigate bot
the integrability and nonintegrability aspects of the syst
described by Eq.~1! through Painleve´ (P2) analysis@3–13#
by examining the nature of the singularities exhibited by
solution in the complex time plane. The dynamical syste
having nonpolynomial terms in their equations of moti
such as that in Eq.~1! can be conveniently investigated fo
the singularity structure by converting them into polynom
or rational forms. This is done by making an exponen
transformation of the dependent variables. However, we n
that very few dynamical systems that are of nonpolynom
type—such as the Arnold-Beltrami-Childress~ABC! flows
@10#, the sine-Gordon equation, the driven pendulum@11#,
and the damped driven Morse oscillator@12#—have been
studied in this way. In this paper, after making such an
ponential transformation we show that there exists a spe
choice of the parameterb522d2 for which the free
( f50) but dampedToda oscillator is free from movabl
critical points and hence is likely to be integrable. W
present the exact solution corresponding to the above p
metric choice. In the nonintegrable regime, we show that
singularities exhibit locally a complicated, clustered, tw
armed, infinite-sheeted Riemann structure in the comp
t2 plane. Further, we analyze numerically the global sin
551063-651X/97/55~4!/3942~6!/$10.00
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larity structure in the complext2 plane corresponding to th
real time chaotic dynamics exhibited by the system.

Introducing the transformation

y5ex, ~2!

Eq. ~1! reduces to

yÿ2 ẏ21dyẏ1ay32by22 f y2cosvt50. ~3!

We will analyze the singularity structure of the solution
this equation. The general solution to Eq.~3! can be repre-
sented locally as a Laurent series of the form

y5(
j50

`

ajt
j22, t5~ t2t0!→0 ~4!

about an arbitrary movable singularityt0, in which one of the
aj ’s must be arbitrary in addition tot0. Substituting the an-
zatz~4! into Eq.~3!, we obtain the recursion relations for th
aj :

(
r

F ~ j2r22!~ j22r21!aj2rar1d~ j2r23!aj2r21ar

1a(
p
aj2rar2pap2baj2r22ar

2 f(
p
Gj2r22ar2papG50, 0<p<r< j , ~5!

where G(t)5cosvt and Gn5(1/n!) @]nG(t)#/(]tn)u t5t0
.

From Eq.~5! one obtains

j50:a0522/a, ~6a!
3942 © 1997 The American Physical Society
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55 3943ANALYTIC STRUCTURE AND CHAOTIC DYNAMICS OF . . .
j51:a152d/a, ~6b!

j52:0.a22~2d21b1 fcosvt0!a050. ~6c!

Thus, from Eq.~6c! it is evident thata2 is the needed arbi
trary coefficient. But fora2 to be arbitrary, an inconsistenc
arises in Eq.~6c!. This means that, in general, forfÞ0 the
Laurent series~4! has to be modified. However, whe
f50, two possibilities arise from Eq.~6c! for a2 to be arbi-
trary, as follows.

~a! d50 andb50. This condition implies that the equa
tion of motion of the free undamped oscillator may be co
verted to a first-order Bernoulli equation and trivially int
grated.

~b! 2d21b50. Here the equation of the free damp
oscillator @ f50 in ~1!# possesses theP2 property for the
specific value of the parameterb given by

b522d2. ~7!

For the general casedÞ0, bÞ0, andfÞ0, the arbitrari-
ness ofa2 can be recaptured by modifying the anzatz~4! and
introducing logarithmic terms in Eq.~4! through the psi se-
ries @7#

y5(
j50

`

(
k50

`

ajkt
j22~t2lnt!k. ~8!

Then the recursion relations for theajk for Eq. ~3! become

(
r ,s

H ~ j2r12k22s22!~ j22r12k24s21!aj2r ,k2sars

1@~2 j22r14k24s25!~k22s11!2s#

3aj2r22,k2s11ars1~k2s12!~k22s11!

3aj2r24,k2s12ars1d~ j2r12k22s23!

3aj2r21,k2sars1d~k2s11!aj2r23,k2s11ars

1a(
p,q

aj2r ,k2sar2p,s2qapq2baj2r22,k2sars2 f

3(
p
Gj2r22ar2p,k2sapsJ 50,

0<p<r<j,0<q<s<k. ~9!

The values of the coefficientsa00 and a10 are given by
a00522/a anda1052d/a. For a20 to be arbitrary we now
have

0.a202a012~2d21b1 fcosvt0!a0050, ~10!

which means that

a0152~2d21b1 fcosvt0!/a. ~11!

From Eq.~8! we see that the singularityt0 is no longer a
movable pole but is, instead, a movable logarithmic bra
point and Eq.~3! is not ofP2 type. Thus the system~1! is,
in general, nonintegrable except when~i! d50,b50,f50
and ~ii ! b522d2, f50.
-

h

Now we proceed to obtain the exact solutions of the f
damped Toda oscillator withb522d2. Then the equation
of motion ~3! becomes

yÿ2 ẏ21dyẏ1ay312d2y250. ~12!

By substitutingẏ5yu and its derivative in Eq.~12!, we get

ü2~u2d!u̇22d2u2du250. ~13!

Introducing new variablesu52R2d and z5t/2, Eq. ~13!
can be transformed into

R9522RR824dR824dR214d3, ~14!

where the prime indicates differentiation with respect toz.
The first integral of Eq.~14! is given by@14#

R81R25v, ~15a!

where

v8524dv14d3. ~15b!

Equation~15b! can be readily solved forv and inserted into
~15a!. When this is followed by the substitutionR5S8/S, it
results in the following linear equation:

S92@d21c0exp~24dz!#S50, ~16!

wherec0 is an integration constant. Equation~16! may be
put into a more well known form by changing the depend
variableS(z) asS(z)5T(r ), wherer5exp(22dz), to give

r 2T91rT82F141
c0
4d2

r 2GT50. ~17!

Equation ~17! is a standard Bessel function equation@15#,
one of whose solutions is T5Z1/2(rm), where
m5A2c0/4d

2 andZ1/2 is a Bessel function of one-half or
der. Now the solutiony can be written as

y5y0exp~2dt!/@Z1/2~mexp~2dt!#2. ~18!

In Eq. ~18!, y0 is another integration constant. Equation~18!
represents an exponentiallike decaying solution of~12!, as
expected.

In order to study the analytic structure of the solution
Eq. ~3!, we now look for a closed set of recursion relatio
among theajk’s given by Eq.~9!. These turn out to be the se
a0k ,k50,1,2, . . . , which satisfy

(
s

H @4~k2s!~k2s21!24s~k2s!14s22~k2s!

12#a0,k2sa0s1a(
q

a0,k2sa0,s2qa0qJ 50. ~19!

Introducing now the generating function

Q~z!5 (
k50

`

a0kz
k, ~20!
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where thez is a function of t, the following differential
equation forQ(z) is obtained:

4z2QQ924z2Q8212zQQ812Q21aQ350, ~21!

where the prime denotes differentiation with respect toz.
Since in the limitt→0, the most dominant terms in the p
series~8! involve powers oft2lnt only, we can obtain~21! in
a more direct way by substituting

y~ t !5
1

t2
Q~z!, ~22!

where

z5t2lnt, ~23!

into ~3!. Thus ~21! can be regarded as the original equati
~3! rescaled in the neighborhood of a given singularityt0.
Further, it is a straightforward exercise to show that Eq.~21!
possesses the Painleve´ property withQ(z) having the local
expansion

Q~z!5(
j50

`

Aj~z2z0!
j22 ~24!

in which A2 andz0 are the arbitrary parameters.
We can also see that Eq.~21! can be integrated exactly b

making the substitution

Q~z!5j2f ~j!, j5Az ~25!

in Eq. ~21! so that we get

f f 92 f 821a f 350, ~26!

where the prime refers to differentiation with respect toj.
The first integral of~26! is given by@14#

f 82522a f 31I 1f
2, ~27!

where the value of the integration constantI 1 can be deter-
mined asI 156aa01512(2d21b1 fcosvt0). By a simple
transformation

f ~j!5@12g2~j!#I 1/2a, ~28!

Eq. ~27! is reduced to a simple first-order nonlinear ordina
differential equation

g85 1
2AI 1@g221#. ~29!

Equation ~28! can be readily integrated and its solution
given by

g~j!52tanhF12AI 1~j2j0!G , ~30!

where j0 is the arbitrary integration constant. Choosi
j050 for convenience, we can write

f ~j!5
I 1
2a

sech2F12AI 1jG . ~31!
It is evident thatf (j) has poles of second order which a
situated at the discrete points

jm5 i
p

AI 1
~2m11!, mPZ ~32!

in the complexj plane, wherem denotes the lattice site
integer.

The singularity positions in thez2 plane can be obtained
from @c.f. Eq. ~25!# the pole positions ofjm as

zm52p~2m11!2/12~2d21b1 fcosvt0!. ~33!

FIG. 1. Local singularity structure in the complex~a! z2 plane
(z5t2lnt) given by Eq.~33! and~b! t2 plane in the neighborhood
of the marked singularity in~a! determined from the analytic map
ping ~38! and ~39! for d50.25, a51.0, b51.0, v52.0, and
f50.5. The value ofm50,61,62, . . . ,69,610 for ~a! and
m50 for ~b!.
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FIG. 2. Real-time dynamics of system~1! with the same parameter values as in Fig. 1.~a! Bifurcation diagram and~b! the maximal
Lyapunov exponent (lmax) as a function of the amplitude (f ) of the external driving force.
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From Eq.~33! we can study the singularity structure in th
complexz2 plane by plotting Im(z) versus Re(z) for a cho-
sen set of parametric values. As an illustration in Fig. 1~a!,
we have fixed the parameter values asd50.25, a51.0,
b51.0,v52.0 and obtained the singularity structure in t
complexz2 plane about the singularity located at the orig
~since we taket050) for f50.5. This singularity pattern
given by Eq.~33!, can be mapped back to the complext2
plane by the multivalued transformation@c.f. Eq.~23!, where
we have chosent050]

z5t2lnt ~34!

similar to the procedure adopted by Fournier, Levine, a
Tabor @7# for the Duffing oscillator. This can be performe
by using polar coordinates in both thez2 and t2 planes as

z5reif ~35!

and
d

t5reiu. ~36!

From~34! and~35! we can write the real and imaginary par
of z in terms ofr andu as

Re ~z!5r 2@cos~2u!lnr2~u12pn!sin~2u!#, ~37a!

Im ~z!5r 2@sin~2u!lnr1~u12pn!cos~2u!#, ~37b!

wheren is the Riemann sheet index in thet2 plane. From
this pair of equations~37!, it follows that

r5exp@2~u12pn!cot~2u2f!# ~38!

and so

r52~u12pn!exp@22~u12pn!cot~2u2f!#

3 cosec~2u2f!. ~39!
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FIG. 3. Global singularity structure in the complex time plane of system~1! obtained numerically by using theATOMFT package for~a!
f50.5, ~b! f52.5, ~c! f54.5, and~d! f56.5, keeping the other parameter values the same as in Fig. 1.
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Equations~38! and ~39! completely determine the mappin
z→ t.

For a given pole in thez2 plane given by Eq.~33!, we
assign polar coordinatesr andf, which can be readily com
puted. Then from Eq.~39! we can compute the value ofu by
a simple numerical root search method, for any sheetn, cor-
responding to the given (r,f) values. From this value ofu
the associatedr value is computed from Eq.~38!. Thus for
any one of the singularities in thez2 plane given by Eq.
~33!, we can obtain the corresponding singularity and its s
structure in the complext2 plane through the analytic map
ping ~38! and ~39!. In Fig. 1~b! we have shown one suc
local singularity structure in the complext2 plane, in the
neighborhood of the marked singularity in Fig. 1~a!, deter-
mined from the analytic mapping for the same choice
parametric values as mentioned above. From Fig. 1~b! we
find that the local singularity structure obtained is a tw
-

f

-

armed structure with the singularities becoming dens
‘‘packed’’ and clustered along each arm as they approach
center of the two arms, withn increasing. The recursive
nature of this clustering leads to an immensely complica
singularity structure in the complext2 plane.

Now we study numerically, the real-time chaotic dynam
ics exhibited by the damped driven Toda oscillator and th
we analyze the corresponding singularity structure exhib
by the solution of the system~1! in the complex time plane
For our numerical study, we rewrite Eq.~1! as a system of
three coupled first-order differential equations

ẋ5y, ẏ52dy2aex1b1 fcosz, ż5v. ~40!

Then we integrate Eq.~40! numerically using the fourth-
order Runge Kutta method for various values off , keeping
the other parameters fixed asd50.25,a51.0, b51.0, and
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55 3947ANALYTIC STRUCTURE AND CHAOTIC DYNAMICS OF . . .
v52.0 and investigate the real-time dynamics of the syst
The bifurcation diagram shown in Fig. 2~a! depicts the
period-doubling route to chaos exhibited by the system. F
ure 2~b! shows the corresponding largest Lyapunov expon
@16# lmax as a function of increasingf , confirming the be-
havior of ordered and chaotic motions exhibited by the s
tem as shown in Fig. 2~a!.

Now let us investigate the corresponding global singu
ity structure pattern in the complex time plane, obtained
merically by using theATOMFT package developed by Chan
@17#, as a function of the control parameterf. We concentrate
on the singularity pattern formed by the singularities loca
by theATOMFT program, only along the specified integratio
path, for variousf values, while keeping the other param
eters fixed~as in Fig. 2!. The integration path is chosen suc
that in the complex time domain, we initially integrate alo
the path from the first leg~0.0,0.0! of the path up to the
vertex ~1.3,2.1! and then continue the path vertically up
the vertex~1.31,4.2!. The same integration path is used
various f values used for our investigation.

For f50.0, the singularity structure of Eq.~1! in the com-
plex time plane exhibits a simple deformed lattice pattern
singularities that corresponds to the damped oscillation
the real-time domain. When the value off is increased to
0.5, the singularity structure is observed as shown in F
3~a! and, correspondingly, in the real-time domain, the s
tem exhibits a period-T limit-cycle behavior. The continuou
lines that connect the singularity positions~depicted by the
dots! in Fig. 3~a! are just to show clearly the observed chim
ney pattern of singularities in the complext2 plane. Further
increase tof52.5 andf54.5 results in the reduction of th
width of the chimney pattern compared to that of Fig. 3~a!,
along with the fact that the singularities tend to accumul
at the top of the chimney pattern as shown, respectively
Figs. 3~b! and 3~c!. For f56.5, the system~1! exhibits cha-
tt.
.
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otic oscillations~c.f. Fig. 2! in the real-time domain and th
corresponding singularity structure in the complex tim
plane shows the clustering of singularities at the top of
chimney pattern and is shown in Fig. 3~d!.

To conclude, the integrability and nonintegrability pro
erties of the damped driven Toda oscillator, which has n
polynomial terms in its equation of motion, has been inv
tigated by analyzing the singularity structure in the comp
time plane through Painleve´ analysis. We identify the param
eter choiceb522d2 when f50 for which the system~1!
possesses the Painleve´ property and we present the corr
sponding exact solutions. In the nonintegrable regime,
find that the local singularity structure of the system exhib
a two-armed infinite-sheeted Riemann structure of singul
ties in the complext2 plane. Further, we have also analyz
numerically the global singularity structure of the system a
compared it with their corresponding real-time chaotic d
namics exhibited by these systems. From our investigatio
we observe that the global singularity pattern of the syst
in the complex time plane exhibits a chimneylike patte
whose width is reduced, and the singularities tend to ac
mulate at the top of the chimney pattern, as these syst
undergo period doubling bifurcations leading to chaotic
cillations in the real-time domain. As the results report
here appear, to be common to those systems in which lo
rithmic singularities enter into their solution, we feel th
more examples of this type may give us an indication of
generality of the above kind of results.
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