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Analytic structure and chaotic dynamics of the damped driven Toda oscillator
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The singularity structure exhibited by the solution of the damped driven Toda oscillator in the complex time
(t—) plane is investigated through Painie¢—) analysis. We find that there exists a specific parametric
choice for which the free bulampedToda oscillator possesses tRe- property and hence is likely to be
integrable. We present the exact solution corresponding to this integrable choice. In the nonintegrable regime,
we show that the singularities exhibit locally a complicated, clustered, two-armed infinite-sheeted Riemann
structure in the complek— plane. Further, we have analyzed numerically the global singularity structure in
the complex — plane(i.e., analytic structunecorresponding to the real time chaotic dynamics exhibited by the
system. From the investigations, we observe that the global singularity structure exhibits a “chimneylike”
pattern in which the width at the bottom of the chimney decreases and the singularities tend to cluster at the top
of the chimney, in the complek— plane corresponding to the real-time chaotic dynamics exhibited by the
system, as the control parameter is varigll063-651X%97)10703-9

PACS numbsgfs): 05.45:+b, 02.90+p, 02.30.Hq, 02.30.Dk

We consider the general form of the equation of motion oflarity structure in the complei— plane corresponding to the

the damped driven Toda oscillatfit], given by real time chaotic dynamics exhibited by the system.
Introducing the transformation
X+ dx+ ae*— B=fcomwt, 1)
y=¢€ V)

whered is the viscous damping parameter andnd w are, Eq. (1) red ¢
respectively, the amplitude and frequency of the external pe- 9. (1) reduces to
riodic force. The parameters and 8 are associated with the
potential. Since the potential is asymmetric, the system de-
scribed by Eq(1) can serve as a typical model for asymmet-
ric oscillators. It has already been used to describe a nonli
ear electronic circuif2]. Here we wish to investigate both
the integrability and nonintegrability aspects of the syste
described by Eq(1) through PainlevéP —) analysig3—13| =
by examining the nature of the singularities exhibited by the y=> a A72 1=(t—ty)—0 (4)
solution in the complex time plane. The dynamical systems j=0

having nonpolynomial terms in their equations of motion . ) ) _

such as that in Eq(1) can be conveniently investigated for about an arbitrary movable singulartty, in which one of the
the singularity structure by converting them into polynomial@;’s must be arbitrary in addition tty,. Substituting the an-
or rational forms. This is done by making an exponentialzatz(4) into Eq.(3), we obtain the recursion relations for the
transformation of the dependent variables. However, we not&; :

that very few dynamical systems that are of nonpolynomial
type—such as the Arnold-Beltrami-Childre68BC) flows V(i _o9r_1\a. S ava

[10], the sine-Gordon equation, the driven pendullii], Z (=r=2)(-2r=13-a+d(-r=3)3-
and the damped driven Morse oscillatidri2]—have been
studied in this way. In this paper, after making such an ex-
ponential transformation we show that there exists a specific
choice of the parameteB=—2d? for which the free
(f_=_0) but_ dampedToda os_,cillgtor is free from movable _fE Gj_r-28,-pap|=0, O<psrs<j, (5)
critical points and hence is likely to be integrable. We P

present the exact solution corresponding to the above para-

metric choice. In the nonintegrable regime, we show that thavhere G(t)=coswt and G,=(1n!)[d"G(1)1/(t") =1,
singularities exhibit locally a complicated, clustered, two-From Eq.(5) one obtains

armed, infinite-sheeted Riemann structure in the complex

t— plane. Further, we analyze numerically the global singu- j=0:ap=—2/a, (62

yy—y2+dyy+ ay®— By2— fy2coswt=0. 3)

We will analyze the singularity structure of the solution to
This equation. The general solution to E8) can be repre-
msented locally as a Laurent series of the form

+a% a8 p@p— BA) ;28
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j=1:a;,=2d/a, (6b) Now we proceed to obtain the exact solutions of the free
damped Toda oscillator witiB=—2d2. Then the equation
j=2:0a,— (2d%+ B+ fcoswty)ay=0. (6c)  of motion (3) becomes
Thus, from Eq.(60) it is evident thata, is the needed arbi- yy—y2+dyy+ ay3+2d2y?=0. (12)

trary coefficient. But fora, to be arbitrary, an inconsistency
arises in Eq(6¢). This means that, in general, for-0 the By substitutingy=yu and its derivative in Eq(12), we get
Laurent series(4) has to be modified. However, when
f=0, two possibilities arise from Ed6c¢) for a, to be arbi- U—(u—d)u—2d2u—du=0. (13
trary, as follows.
(8 d=0 andB=0. This condition implies that the equa- Introducing new variables=—-R—d andz=t/2, Eq. (13
tion of motion of the free undamped oscillator may be con-can be transformed into
verted to a first-order Bernoulli equation and trivially inte-
grated. R’=—-2RR —4dR’ —4dR?+4d?, (14)
(b) 2d®+ B=0. Here the equation of the free damped . o . o .
oscillator[f=0 in (1)] possesses the— property for the where the prime indicates differentiation with respectzto
specific value of the parametgrgiven by The first integral of Eq(14) is given by[14]

B=—2d> W R'+R*=v, (153

For the general casg+#0, 8#0, andf#0, the arbitrari- Where
ness ofa, can be recaptured by modifying the anzétzand
introducing logarithmic terms in Ed4) through the psi se-
ries[7]

v'=—A4dv+4d3. (15b)

Equation(15b) can be readily solved far and inserted into

© o (159. When this is followed by the substitutidR=S'/S, it
y=> > ajij—2(72|nT)k_ (8)  results in the following linear equation:
j=0 k=0
S’'—[d?+coexp(—4dz)]S=0, (16)

Then the recursion relations for tlag, for Eq. (3) become
wherec, is an integration constant. Equatigh6) may be
S (j—r+2k—2s—2)(j—2r +2k—4s—1)a ., . put into a more well known form by changing the dependent
j—r,k—s%rs

rs variableS(z) asS(z)=T(r), wherer =exp(-2d2), to give
+[(2] —2r+4k—4s—5)(k—2s+1)—s] 1 ¢
P77 +1T' = | o+ —5r?|T=0. (17)
X8 ok st18st (K—5+2)(k—25+1) 4 4d
Xaj_y_gk-s+28rstd(j—r+2k—2s—-3) Equation(17) is a standard Bessel function equatidrb],
d(k one of whose solutions is T=Zy,(ru), where
X8j—r-1k-sarst A(K=S+1)8j_—3x-s+18rs w=+—co/4d? andZ,,, is a Bessel function of one-half or-
der. Now the solutiory can be written as
+a2 ) k-sAr—p,s—qpq~ BAj—r—2k—sdrs— )
P y=Yoexp(—dt)/[Z;( wexp(—dt)]*. (18)
X2 Gjr—28r—pk—s2ps; =0, In Eq. (18), y, is another integration constant. Equatidss)
P represents an exponentiallike decaying solution 1), as

expected.
In order to study the analytic structure of the solution of
The values of the coefficientay, and a;, are given by EG. (3), we now look for a closed set of recursion relations

ago= — 2/a anda,y=2d/a. For a,, to be arbitrary we now among thea;,’s given by Eq.(9). These turn out to be the set
have aok.k=0,1,2 ..., which satisfy

Osp=rs<j,0sqgsssk 9

08,0~ 80— (2d*+ B+ fcoswtg)ag=0,  (10) > {[4(k—s)(k—s—1)—4s(k—s)+4s—2(k—Ss)
which means that s

ag,=2(2d2+ B+ fcoswty)/ . (11) +2]agy_sdost a% Qok-sd0s-qdogl =0. (19

From Eg.(8) we see that the singularity, is no longer a
movable pole but is, instead, a movable logarithmic branc
point and Eq.(3) is not of P— type. Thus the systertl) is, o
in general, nonintegrable except whém d=0,8=0,f=0 0(2)=2 ayZ (20)
and(ii) B=—2d?f=0. k=0 ’

Hntroducing now the generating function
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where thez is a function of r, the following differential \
equation for®(z) is obtained: a

47200" - 4720 '2+2200' + 202+ a®3=0, (21)

where the prime denotes differentiation with respectzto
Since in the limit7— 0, the most dominant terms in the psi
series(8) involve powers ofr?Inr only, we can obtairi21) in

a more direct way by substituting Re(z)| = »
1
Y(t):;z@)(z), (22
where
z=7Inr, (23

into (3). Thus(21) can be regarded as the original equation -1

(3) rescaled in the neighborhood of a given singulatiy - 80 Im(z) 80
Further, it is a straightforward exercise to show that @4)
possesses the Painlepeoperty with®(z) having the local
expansion
- _ 0.2
0(2)=2 Aj(z-20) 2 (24
i=o b
in which A, andz, are the arbitrary parameters.
We can also see that E@®1) can be integrated exactly by
making the substitution
O(2)=£1(8), &=z (25) Im (1)
in Eq. (21) so that we get N
ff"—f'2+ af3=0, (26)
where the prime refers to differentiation with respectéto
The first integral of(26) is given by[14]
f2=—2af3+1,f2 2 -0.2
aTh @) -0.2 Re(t) 0.2
where the value of the integration constaptcan be deter-
mined asl;=6aay,=12(2d%+ B+ fcoswty). By a simple FIG. 1. Local singularity structure in the complé® z— plane
transformation (z=t2Int) given by Eq.(33) and(b) t— plane in the neighborhood
of the marked singularity ifa) determined from the analytic map-
f(&)=[1—g%(&)]1,/2a, (28)  ping (38 and (39) for d=0.25, a=1.0, B=1.0, ®=2.0, and

f=0.5. The value ofm=0,-1,+2,...,+9,+#10 for (a8 and
Eq. (27) is reduced to a simple first-order nonlinear ordinarym=0 for (b).
differential equation

It is evident thatf (&) has poles of second order which are

9'=3 \/E[gz_ 1]. (29 situated at the discrete points
Equation(28) can be readily integrated and its solution is
iven b
given by =i ——(2m+1), meZ (32)
Iy

1
9(é)= —tani{z\/rl@— &) |, (30

in the complex¢ plane, wherem denotes the lattice site

where &, is the arbitrary integration constant. Choosinginteger. _ o _
£,=0 for convenience, we can write The singularity positions in the— plane can be obtained

from [c.f. Eq.(25)] the pole positions of,, as

I 1
f(£)= 5, secht Eﬂé}- (31) 2= — m(2m+1)2/122d?+ B+ fcoswty). (33
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FIG. 2. Real-time dynamics of systeth) with the same parameter values as in Fig(al.Bifurcation diagram andb) the maximal
Lyapunov exponentN,) as a function of the amplitude) of the external driving force.

From Eq.(33) we can study the singularity structure in the t=rel?. (36)
complexz— plane by plotting Img) versus Ref) for a cho-

sen set of parametric values. As an illustration in Fi@),1  From (34) and(35) we can write the real and imaginary parts
we have fixed the parameter values @s0.25, a=1.0,  of 7 in terms ofr and § as

B=1.0, »=2.0 and obtained the singularity structure in the

complexz— plane about the singularity located at the origin Re (z)=r2[cod 26)Inr — (6+2mn)sin(26)], (373
(since we takety=0) for f=0.5. This singularity pattern,
given by EQq.(33), can be mapped back to the complex
plane by the multivalued transformatipaif. Eq.(23), where
we have chosety=0]

Im (z)=r?[sin(260)Inr +(6+2mn)cog26)], (37b

wheren is the Riemann sheet index in the plane. From
z=t2Int (34) this pair of equation$37), it follows that

similar to the procedure adopted by Fournier, Levine, and r=exdg —(0+2mn)cot(20— ¢)] (39
Tabor[7] for the Duffing oscillator. This can be performed
by using polar coordinates in both tke- andt— planes as and so

z=pe'’ (39 p=—(0+2mn)exy —2(9+2mn)cot( 26— ¢)]
and X cose€20— o). (39
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4.5 4.5
a (o4
Im(f) ) \ Im(t) .
1.0 1.0
0.9 Re(t) 1.6 0.9 Re(t) 1.6
4.5 4.5
b d
Im (1) Im (1)
1.0 1.0
0.9 Re(t) 1.6 0.9 Re(t) 1.6

FIG. 3. Global singularity structure in the complex time plane of systBnobtained numerically by using threromrT package for(a)
f=0.5,(b) f=2.5,(c) f=4.5, and(d) f=6.5, keeping the other parameter values the same as in Fig. 1.

Equations(38) and (39) completely determine the mapping armed structure with the singularities becoming densely
z— t. “packed” and clustered along each arm as they approach the
For a given pole in the— plane given by Eq(33), we  center of the two arms, witln increasing. The recursive
assign polar coordinatgsand ¢, which can be readily com- nature of this clustering leads to an immensely complicated

puted. Then from Eq39) we can compute the value éfby  singularity structure in the complex- plane.

a simple numerical root search method, for any sheeor- Now we study numerically, the real-time chaotic dynam-
responding to the givenp(¢) values. From this value of  ics exhibited by the damped driven Toda oscillator and then
the associated value is computed from Eq38). Thus for we analyze the corresponding singularity structure exhibited
any one of the singularities in the— plane given by Eq. by the solution of the systeri) in the complex time plane.
(33), we can obtain the corresponding singularity and its subFor our numerical study, we rewrite E(L) as a system of
structure in the complek— plane through the analytic map- three coupled first-order differential equations

ping (38) and (39). In Fig. 1(b) we have shown one such _ _ .

local singularity structure in the compléx- plane, in the x=y, y=—-dy—ae*+pB+fcog, z=w. (40
neighborhood of the marked singularity in Figa}l deter-

mined from the analytic mapping for the same choice ofThen we integrate Eq@40) numerically using the fourth-
parametric values as mentioned above. From Fif) tve = order Runge Kutta method for various valuesfokeeping
find that the local singularity structure obtained is a two-the other parameters fixed ds=0.25, «=1.0, 8=1.0, and
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w=2.0 and investigate the real-time dynamics of the systenotic oscillations(c.f. Fig. 2 in the real-time domain and the
The bifurcation diagram shown in Fig.(@ depicts the corresponding singularity structure in the complex time
period-doubling route to chaos exhibited by the system. Figplane shows the clustering of singularities at the top of the
ure Ab) shows the corresponding largest Lyapunov exponenghimney pattern and is shown in Figid3.

[16] Mmax as a function of increasing, confirming the be- To conclude, the integrability and nonintegrability prop-
havior of ordered and chaotic motions exhibited by the syserties of the damped driven Toda oscillator, which has non-
tem as shown in Fig. (@). polynomial terms in its equation of motion, has been inves-

_ Now let us investigate the corresponding global singulartigated by analyzing the singularity structure in the complex
ity structure pattern in the complex time plane, obtained nusjme plane through Painlé\analysis. We identify the param-
merically by using thaTomFT package developed by Chang eter choice@=—2d? when f=0 for which the systentl)
[17], as a function of the control paramefeWe concentrate ossesses the Painlepeoperty and we present the corre-

on the singularity pattern formed by the singqlari_ties IOC"."ted[s)ponding exact solutions. In the nonintegrable regime, we
ggtah,effrov’\g:oE;?g\izmég,nal/h?:gnfeghpeinsgp?r?gli?hlgrt-eg;?;r%rj find that the chgl 'singularity strpcture of the system gxhibit§
eters fixedas in Fig. 2. The integration path is chosen such a an-arr]med mf:nltei-shleeted Rlehmann s:]ructurle of smlgula(;l-
that in the complex time domain, we initially integrate alongtIeS In the complex— plane. qut €r, we have also analyze
the path from the first 1eg0.0,0.0 of the path up to the numencally thg gIoba! singularity structure of the system and
vertex (1.3,2.1 and then continue the path vertically up to compared 'F \.N'th their corresponding real-tlme_ chac_Jtlc _dy-
the Vertex£1.31 4.2. The same integration path is used in namics exhibited by these systems. From our investigations,
variousf values' used for our investigation. we observe that Fhe global S'”QE"‘?‘”W pattern Of. the system
For f=0.0, the singularity structure of E¢L) in the com- in the cqmplgx time plane exh|b|t§ a ch|_mneyl|ke pattern
o iyvhose width is reduced, and the singularities tend to accu-

plex time plane exhibits a simple deformed lattice pattern of \Ulate at the tob of the chimnev pattern. as these svstems
singularities that corresponds to the damped oscillations in P yPp ' y

the real-time domain. When the value bfis increased to undergo period doubling bifurcations leading to chaotic os-

0.5 the sinqularity structure is observed as shown in Fi cillations in the real-time domain. As the results reported
N 9 y s . . . Yhere appear, to be common to those systems in which loga-
3(a) and, correspondingly, in the real-time domain, the sys-. = ~ """ " . . )
tem exhibits a period- limit-cycle behavior. The continuous rithmic smgullarltufesh_enter Into they solutlor],d\{ve feel tfh?]t
lines that connect the singularity positiofdepicted by the meor:grgl)i(? n:)? tehseoagol\?et)l/(?: d%ﬁe%tjﬁsus an indication of the
dotg in Fig. 3(a) are just to show clearly the observed chim- 9 y '
ney pattern of singularities in the complex plane. Further One of the author$S.P) would like to thank Dr. J. M.
increase tdf =2.5 andf =4.5 results in the reduction of the Dixon and the Department of Physics, University of War-
width of the chimney pattern compared to that of Fige)3  wick for their kind hospitality during his visit, where part of
along with the fact that the singularities tend to accumulateéhe work reported here was carried out. S.P. also thanks Dr.
at the top of the chimney pattern as shown, respectively, ifR. N. Singh, Scientist-in-charge, C-MMACS for a critical

Figs. 3b) and 3c). For f=6.5, the systenfl) exhibits cha- reading of the manuscript.
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